报告题目:Non-relativistic limit for the cubic nonlinear Klein-Gordon equations
报告人:吴奕飞教授(南京师范大学)
报告时间:2024年11月8日16:00-17:00
报告地点:数学科学学院B327
内容简介:This talk focuses on the non-relativistic limit of the Cauchy problem for the defocusing cubic nonlinear Klein-Gordon equations. We show that, as the light speed $c$ tends to infinity, the error function is bounded by, (1) in the case of 2D and modulated Schrödinger-wave profiles, $c^{-2}$, uniformly for all time, under $H^2$ initial data; (2) in the case of both 2D and 3D and modulated Schrödinger profiles, $c^{-2} +(c^{-2}t)^{\alpha/4}$, under $H^\alpha$ initial data with $2 \leq \alpha \leq 4$. We also show the sharpness of the upper bounds in (1) and (2), and the required minimal regularity on the initial data in (2). This talk is based on a joint work with Zhen Lei.
报告人简介:吴奕飞,南京师范大学数学科学学院教授、博士生导师。国家级称号人才。从事偏微分方程理论和数值计算方面的研究工作,在非线性Schrödinger方程 、KdV方程等整体适定性和低正则算法构造方面做出一系列研究成果,解决了菲尔兹奖获得者T.Tao等提出的长时间遗留问题,设计了目前为止非线性Schrödinger方程和KdV方程正则性要求最低的快速格式,在JEMS、CMP、Adv.Math、Anal.PDE、SINUM、Numer.Math.、Math.Comp.等学术期刊中发表论文。
(撰稿:张倩影 审核:张国)
数学科学学院
2024年11月6日